Mobile Application

Programming
SWift

Swift

= An object-oriented and functional language designead
with as a core goal In the language syntax

= No pointers, single-line branches, bounds checking

n Built to co-exist with-Objective-C, Apple’s previously
preferred language, as well as use existing frameworks

® Uses a memory management technology called
Automatic'Reference Counting to determine object life

» Strongly typed, but uses type inference to reduce code

® (Generics with built-in support for Array and Dictionary

Swift Syntax

C++ Syntax SWift Syntax

Person* person = new Person(); var person: Person = Person()
int age = person->age(); var age: Int = person.age
person->setHeight(1.8); person.height = 1.8

delete person; // Handled automatically by ARC

k car = new Car(Car . viber)

d :i!{jﬁﬂ. — car->velocif

.u-----'--r---.&;;ﬁéf var velocity: Float = car.velocity

TIITTITIIIN 0082

car- >setVe10c1ty(veloc1ty + 200.0); car.velocity = velocity + 200.0

delete car; // Handled automatically by ARC

Swift Syntax

C++ Syntax

car.setVelocityAndAcceleration(200.0f, 10.0f);

Swift Syntax

car.setVelocity(200.0, andAcceleration: 10.0)

Swift Syntax

C++ Syntax

typedef struct

{
float x;
float y;
} Point;

Point PointMake(float x, float y)
{

Point p;

DX =S

p.y =Y;

return p;

iy
A

car.setPosition(
PointMake(10.0, 50.0));

Swift Syntax

struct Point

{
var x: Float = 0.0
var y: Float = 0.0
¥
func PointMake(x: Float, y: Float) ->
Point
{
var p: Point = Point()
DX =
p.y =Y
return p
}
3

car.position = PointMake(10.0, 50.0)

Swift Syntax

C++ Syntax (.h) Swift Syntax

class Car

class Car {

{ private var _position: Point
Point position; private var _velocity: Float
float velocity; private var _model: Int
int model; private var _vin: String

char* vin;
class func viper() -> Int { return 1 }
public:
static const int viper = 1; init(model: Int) { /*.*/ }
deinit { /*.*/ }
Car(int model);

~Car(); var position: Point
{
Point position(); get { return _position }
volid setPosition(Point p); set { _position = newValue }
it }
}

Swift Features

Explicit Nullable Types called with 7
shorthand in declaration. Unwrap with / or if let x = opX

Mutability supported on structure types via declaration
keywords var (Mutable) and /et (Immutable). For
reference types like classes, /et permanently binds an
Instance to an name, but the instance can still change.

Support for tuples in declarations and function returns

-lexible switch statements use fallthrough not break

-irst-class functions that are implemented as closures

Classes, structures, enums with advanced features

9

Swift Top-Level Entities N

x | ke C/C++ but unlike Java, Swift allows declarations of
: , and at the top-level,

outside any class declaration
® Constants are declared using the let keyword
= \ariables are declared using the var keyword

= Functions are declared using the func keyword with
parameter names interleaved with the name of the
function, causing it to read like a sentence

Swift Objects

» Classes, structures, and enums are all
with

» (Classes are reference types that share the same
object when assignments are made

® Structs are always copied on assignment
® Single inhertance, but may.conform to many protocols

x Add functions and protocols to existing objects using
extension keyword. Also used to break up large objects

Swift Classes

= Member functions and properties declared using same
syntax as top-level declarations

® Function declarations use parameter labels, but the
when declared in a class

® Properties declare both getter / setter and a (hidden)
packing variable using var and let keywords

= Use private, fileprivate, internal (default), public, and
open for access control

® Constructors are declared using init(), but have different

iInheritance rules than most languages
LSS

Swift Optional Unwrap IONA

= \Norking with optional values because
they are constantly being checked against nil

x SWift offers many facilities to improve the experience
= Use of ? and ! to unwrap the optional
= Chaining expressions using 7 like a?.property?.go()
x Conditional unwrapping using i let a = a { }

= |nverted unwrapping using the guard keyword

Cocoa Foundation Framework

x Standard Library for Swift, like STL or java.”

x Originally coded by NextStep, updated for Swift
= \Norks identically on Mac OS X and i0S

x Objective-C objects that have Swift compatibility

iOS Architecture

Application Frameworks

Graphics & Audio

Core OS (Kernel) & Drivers

Foundation

Basic Classes A Few Other Good One

x NSODbject x NSDate

= NSString = NSTimer

= NSNumber x NSRunlLoop

x NSData x NSThread

x NSArray x NSFileManager

= NSDictionary x NSSocketPort

NSArray, Array, or | |

e e e

N

i

Auto-Expanding ’ Soting

B
Y,
r
a

N

0

Dict

Y,

r

a

N

tIo

IC

D

S

N

//
: /
/

S
le
Fi
ite

1

AY,

/

®

a

e

R

Nng

|

a

®)

G

N

E

e

lu

a

V.

y_

e

K

