
Mobile Application
Programming
Swift

Swift
An object-oriented and functional language designed
with code safety as a core goal in the language syntax

No pointers, single-line branches, bounds checking

Built to co-exist with Objective-C, Apple’s previously
preferred language, as well as use existing frameworks

Uses a memory management technology called
Automatic Reference Counting to determine object life

Strongly typed, but uses type inference to reduce code

Generics with built-in support for Array and Dictionary

Swift Syntax

C++ Syntax Swift Syntax

person->setHeight(1.8);

int age = person->age();

Person* person = new Person();

delete person;

var person: Person = Person()

var age: Int = person.age

person.height = 1.8

// Handled automatically by ARC

car->setVelocity(velocity + 200.0);

float velocity = car->velocity();

Car* car = new Car(Car.viper);

delete car;

var car: Car = Car(type: Car.viper)

var velocity: Float = car.velocity

car.velocity = velocity + 200.0

// Handled automatically by ARC

Swift Syntax
C++ Syntax

Swift Syntax
car.setVelocity(200.0, andAcceleration: 10.0)

car.setVelocityAndAcceleration(200.0f, 10.0f);

Swift Syntax
C++ Syntax

//...

car.setPosition(
PointMake(10.0, 50.0));

Point PointMake(float x, float y)
{

Point p;
p.x = x;
p.y = y;
return p;

}

typedef struct
{

float x;
float y;

} Point;

Swift Syntax

func PointMake(x: Float, y: Float) ->
 Point
{

var p: Point = Point()
p.x = x
p.y = y
return p

}

struct Point
{

var x: Float = 0.0
var y: Float = 0.0

}

//...

car.position = PointMake(10.0, 50.0)

Swift Syntax
C++ Syntax (.h) Swift Syntax

class Car
{

Point position;
float velocity;
int model;
char* vin;

public:
static const int viper = 1;

Car(int model);
~Car();

Point position();
void setPosition(Point p);

};

class Car
{

private var _position: Point
private var _velocity: Float
private var _model: Int
private var _vin: String

 class func viper() -> Int { return 1 }

init(model: Int) { /*…*/ }
deinit { /*…*/ }

 var position: Point
 {

 get { return _position }
 set { _position = newValue }

 }
}

Swift Features
Explicit Nullable Types called Optionals with ?
shorthand in declaration. Unwrap with ! or if let x = opX

Mutability supported on structure types via declaration
keywords var (Mutable) and let (Immutable). For
reference types like classes, let permanently binds an
instance to an name, but the instance can still change.

Support for tuples in declarations and function returns

Flexible switch statements use fallthrough not break

First-class functions that are implemented as closures

Classes, structures, enums with advanced features

Swift Top-Level Entities
Like C/C++ but unlike Java, Swift allows declarations of
functions, variables, and constants at the top-level,
outside any class declaration

Constants are declared using the let keyword

Variables are declared using the var keyword

Functions are declared using the func keyword with
parameter names interleaved with the name of the
function, causing it to read like a sentence

Swift Objects
Classes, structures, and enums are all object types
with different defaults in usage

Classes are reference types that share the same
object when assignments are made

Structs are always copied on assignment

Single inheritance, but may conform to many protocols

Add functions and protocols to existing objects using
extension keyword. Also used to break up large objects

Swift Classes
Member functions and properties declared using same
syntax as top-level declarations

Function declarations use parameter labels, but the first
label is omitted when declared in a class

Properties declare both getter / setter and a (hidden)
backing variable using var and let keywords

Use private, fileprivate, internal (default), public, and
open for access control

Constructors are declared using init(), but have different
inheritance rules than most languages

Swift Optional Unwrap

Working with optional values can be tiresome because
they are constantly being checked against nil

Swift offers many facilities to improve the experience

Use of ? and ! to unwrap the optional

Chaining expressions using ? like a?.property?.go()

Conditional unwrapping using if let a = a { }

Inverted unwrapping using the guard keyword

Cocoa Foundation Framework

Standard Library for Swift, like STL or java.*

Originally coded by NextStep, updated for Swift

Works identically on Mac OS X and iOS

Objective-C objects that have Swift compatibility

iOS Architecture

Foundation

NSObject

NSString

NSNumber

NSData

NSArray

NSDictionary

NSDate

NSTimer

NSRunLoop

NSThread

NSFileManager

NSSocketPort

Basic Classes A Few Other Good Ones

NSArray, Array, or []

Auto-Expanding Sorting

NSDictionary, Dictionary, [:]

Key-Value Encoding Read / Write Files

